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level closedness and use it together with sequential pseudocontinuity assumptions to establish

sufficient conditions for parametric well-posedness and well-posedness. For topological settings
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1 Introduction.

In their seminal papers, Hadamard [13] and Tikhonov [30] initiated two ways of developing well-

posedness study for various mathematical problems. For constrained optimization the pioneer

work was [20] of Levitin and Polyak, who extended the definition for unconstrained problems in

[30]. Observe that the notions of Hadamard and Tikhonov were proved closely related in [7, 29].

Recently, these two notions have been more blended and linked to stability theory in parametric

well-posedness study [5, 17, 18, 27, 31, 32, 34]. Well-posedness for various problems related to
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optimization has been recently intensively considered, see e.g.: for optimization problems in

[14-16, 27, 29, 33, 34], for variational inequalities in [8, 9, 11, 21, 24], for Nash equilibria in

[23, 25], for fixed-point problems in [11, 18, 19], for inclusion problems in [11, 18, 19], for equi-

librium problems in [5, 12, 17] and for bilevel problems in [5, 12, 17, 22, 23]. In most cases it is

commonly assumed at least that the involved functions are sequentially lower semicontinuous.

In [26, 27] a weaker notion of sequential lower pseudocontinuity is introduced to investigate

parametric constrained optimization. In this paper we propose generalized sequential level

closedness definitions and use them together with sequential pseudocontinuity to consider well-

posedness in the Tikhonov sense, which is more important in approximation study and numer-

ical algorithms, because all algorithms consist of providing sequences of approximate solutions

convergent to an exact one. Simple examples (e.g. Examples 2.1 and 2.2) ensure that these

properties are properly weaker than semicontinuity and hence results under assumptions about

these properties are significant in practical situations. We choose to investigate rather general

optimization-related problems to include a wide range of particular cases. Namely we begin

with parametric quasiequilibrium and quasioptimization problems. Note that quasiequilibrium

models contain quasivariational inequalities, complementarity problems, vector minimization

problems, Nash equilibria, fixed-point and coincidence-point problems, traffic networks, etc. A

quasioptimization problem is more general than an optimization one as constraint sets depend

on the decision variable as well. This is a special case of a quasiequilibrium problem but we go

into details due to its importance. Then we pass to bilevel models to discuss first equilibrium

problems with equilibrium constraints. Of course, bilevel considerations are more general than

“single level” ones. Finally we investigate optimization problems with equilibrium constraints,

which have been recently intensively investigated in the literature. We discuss well-posedness

by tools of sensitivity analysis for general settings in topological spaces, since this property is

closely related to stability, especially for parametric problems. When decision spaces are metric

spaces, diameters and measures of noncompactness of approximate solution sets play a crucial

role. Namely, well-posedness depends on whether these quantities tend to zero or not. We will

be employing both Kuratowski’s and Hausdorff’s measures in this paper. Furthermore, in our

results for optimization problems, a kind of marginal functions participates as well. Since the

solution existence of these problems have been intensively studied, we focus on well-posedness

assuming always that solutions of the problem under consideration exist. Some of our results

improve the counterparts in the recent papers [12, 22, 27]. The others are new.

In the rest of this section we state our problems and recall well-posedness notions. Section 2

is devoted to generalized sequential level closedness and sequential pseudocontinuity properties.

In the next section 3 we establish sufficient conditions for a quasiequilibrium problem to be

parametrically well-posed. Section 4 contains well-posedness conditions for a quasioptimization

problem. Parametric well-posedness of equilibrium problems with equilibrium constraints is the

subject of section 5. In the last section 6 we discuss well-posedness of optimization problems
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with equilibrium constraints.

Let X and Λ be Hausdorff topological spaces, f : X ×X × Λ → R and Ki : X × Λ → 2X ,

i = 1, 2. Our parametric equilibrium problem consists of, for each λ ∈ Λ,

(QEPλ) finding x̄ ∈ K1(x̄, λ) such that, for all y ∈ K2(x̄, λ),

f(x̄, y, λ) ≥ 0.

Instead of writing {(QEPλ) : λ ∈ Λ} for the family of problems, i.e. the parametric problem,

we will simply write (QEP) in the sequel.

Let X and Λ be Hausdorff topological spaces, g : X × Λ → R̄, where R̄ = (−∞,+∞], and

K : X × Λ → 2X . Our parametric quasioptimization problem is, for each λ ∈ Λ,

(QOPλ)

{
minimize g(x, λ)
subject to x ∈ K(x, λ).

Similarly as for (QEP), we denote simply (QOP) for this family of quasioptimization prob-

lems.

Let X and Λ be Hausdorff topological spaces. Let S : Λ → X be the solution map of

the parametric quasiequilibrium problem (QEP). Let Y = X × Λ and F : Y × Y → R. The

parametric equilibrium problem with equilibrium constraints we consider is of

(EPEC) finding ȳ ∈ grS such that, for all y ∈ grS,

F (ȳ,y) ≥ 0.

Let S : Λ → X be the solution map of parametric quasiequilibrium problem (QEP). The

optimization problem with equilibrium constraints under question is

(OPEC)

{
minimize g(x, λ)
subject to x := (x, λ) ∈ grS,

where grS denotes the graph of S, i.e. grS := {(x, λ) : x ∈ S(λ)}. Note that although λ is

the parameter of the quasiequilibrium problem defining the constraint, it is a component of the

decision variable (x, λ) of (OPEC) and this problem is not parametric.

We first recall well-posedness notions

Definition 1.1 Let {λn} converge to λ̄. For xn ∈ K1(xn, λn), the sequence {xn} is said to be

an approximating sequence for (QEP) corresponding to {λn}, if there exists a sequence {εn}
convergent to 0+ such that, for all y ∈ K2(xn, λn),

f(xn, y, λn) + εn ≥ 0.

Definition 1.2 Problem (QEP) is called well-posed at λ̄ if

(a) the solution set S(λ̄) of (QEPλ̄) is nonempty;
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(b) for any sequence {λn} convergent to λ̄, every corresponding approximating sequence for

(QEP) has a subsequence convergent to some point of S(λ̄).

(QEP) is called uniquely well-posed at λ̄ if S(λ̄) = {x̄}, a singleton, and every approximating

sequence converges to x̄. (QEP) (or any other problem) is called parametrically (uniquely) well-

posed if it is (uniquely) well-posed at each λ ∈ Λ.

Definition 1.3 Let {λn} converge to λ̄ in Λ. For xn ∈ K(xn, λn), the sequence {xn} is said

to be an approximating (or minimizing) sequence for (QOP) corresponding to {λn}, if there

exists a sequence {εn} ⊆ (0,+∞) convergent to 0 such that

g(xn, λn) ≤ infx∈K(xn,λn)g(x, λn) + εn.

Definition 1.4 Problem (QOP) is called well-posed at λ̄ if

(a) (QOPλ̄) has solutions;

(b) for any sequence {λn} convergent to λ̄, every corresponding approximating sequence for

(QOP) has a subsequence convergent to some point of S(λ̄).

We say that (QOP) is uniquely well-posed at λ̄ if S(λ̄) = {x̄}, a singleton, and every

approximating sequence converges to x̄.

Definition 1.5 A sequence {yn} := {(xn, λn)} ⊆ X×Λ is termed an approximating sequence

for (EPEC) if there exists {εn} → 0+ such that

(i) F (yn,y) + εn ≥ 0, for all y ∈ S(λ) and all λ ∈ Λ, where y := (y, λ);

(ii) {xn} is an approximating sequence for the parametric problem (QEP) corresponding to

{λn}.

Definition 1.6 (EPEC) is said to be well-posed if

(i) it has at least one solution;

(ii) every approximating sequence for (EPEC) has a subsequence convergent to a solution.

Furthermore, we say that (EPEC) is uniquely well-posed if it has a unique solution and any

approximating sequence converges to this solution.

Definition 1.7 A sequence {yn} := {(xn, λn)} ⊆ X ×Λ is called an approximating (or mini-

mizing) sequence for (OPEC) if there exists {εn} → 0+ such that

(i) g(yn) ≤ g(y) + εn, for all λ ∈ Λ and all y ∈ S(λ), where y := (y, λ);

(ii) {xn} is an approximating sequence for (QEP) corresponding to {λn}.

Definition 1.8 Problem (OPEC) is called well-posed if

(i) it has solutions;
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(ii) every approximating sequence for (OPEC) has a subsequence convergent to a solution.

(OPEC) is termed uniquely well-posed if it has a unique solution and every approximating

sequence converges to this solution.

Note that, in the above definitions, like a number of authors, we require an approximating

sequence to be (strictly) included in the constraint set, unlike the definition in [20].

2 Generalized level closedness and pseudocontinuity of
functions.

Let X be a topological space, x0 ∈ X and f : X → R̄. Recall that f is called sequentially upper

(lower, respectively) semicontinuous, written shortly as usc (lsc, resp), at x0 if, for all sequences

{xn} convergent to x0, f(x0) ≥ lim sup f(xn) (f(x0) ≤ lim inf f(xn), resp). Note that in this

paper we are concerned always with sequential properties. Hence we write clearly “sequential”

or “sequentially” only to remind the reader in case necessary. Observe that f is usc at x0 if

and only if for all {xn} → x0 and all b ∈ R,

[f(xn) ≥ b,∀n] ⇒ [f(x0) ≥ b]

and similarly for lower semicontinuity. Therefore, we propose the following natural definition.

Definition 2.1 Let X and Y be topological spaces, f : X → R̄ and g : Y → R̄.

(i) f is called (sequentially) upper 0-level closed with respect to (wrt) g at (x0, y0) ∈ X ×Y

if, for any sequence {(xn, yn)} convergent to (x0, y0),

[f(xn) + g(yn) ≥ 0,∀n] ⇒ [f(x0) + g(y0) ≥ 0].

(ii) f is called (sequentially) lower 0-level closed wrt g at (x0, y0) if, for any sequence

{(xn, yn)} convergent to (x0, y0),

[f(xn) + g(yn) ≤ 0,∀n] ⇒ [f(x0) + g(y0) ≤ 0].

If we have f in place of f + g in the above inequalities, we say that f is upper (or lower)

0-level closed at x0. While if we have b ∈ R instead of 0, then of course “0-level” is replaced by

“b-level”

Remark 2.1 If f and g are usc (lsc, resp) at x0 and y0, respectively, then f is upper (lower,

resp) 0-level closed wrt g at (x0, y0). Indeed, if {(xn, yn)} → (x0, y0) and f(xn) + g(yn) ≥ 0 for

all n, one has

f(x0) + g(y0) ≥ lim sup f(xn) + lim sup g(yn) ≥ lim sup[f(xn) + g(yn)] ≥ 0.
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From now on we use id to denote the identity map on R+. The following example shows

that the converse of the above remark is not true.

Example 2.1 Let f : R → R be defined by

f(x) =

{
0, if x ∈ Q,

1, if x ∈ R \Q,

where Q is the set of the rational numbers. Then f is upper 0-level closed wrt id at (x, y), for

all (x, y) ∈ R×R+, but f is neither usc at any x ∈ Q nor lsc at any x ∈ R \Q.

Definition 2.2 [26, 27] Let X be a topological space and f : X → R̄.

(a) f is said to be (sequentially) upper pseudocontinuous at x0 ∈ X if,

[f(x) > f(x0)] ⇒ [for any {xn} → x0, f(x) > lim sup f(xn)].

(b) f is called lower pseudocontinuous at x0 ∈ X if,

[f(x) < f(x0)] ⇒ [for any {xn} → x0, f(x) < lim inf f(xn)].

(c) f is termed pseudocontinuous at x0 ∈ X if it is both lower and upper pseudocontinuous

at this point.

The class of the upper pseudocontinuous functions strictly contains that of the usc functions,

see [26]. We include here a very simple illustrative example.

Example 2.2 Let f : R → R be defined by

f(x) =


x + 1, if x > 0,

0, if x = 0,
x− 1, if x < 0.

Then, f is pseudocontinuous at 0 but neither usc nor lsc at 0.

We note further that if f and g are lsc (or usc) at x0 then f + g is lsc (usc, resp) at x0.

Unfortunately, this property does not hold for pseudocontinuous functions as shown by

Example 2.3 Let f1, g1 : R → R be defined as follows

f1(x) =

{
1, if x ≥ 0,
x
2 , if x < 0

and g1(x) = −x.

Then, f1 is lower pseudocontinuous at 0 and g1 is continuous at 0. But

(f1 + g1)(x) =

{
−x + 1, if x ≥ 0,

−x
2 , if x < 0.

is not lower pseudocontinuous at 0.
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To see the same situation for upper pseudocontinuity let

f2(x) =

{
−1, if x ≥ 0,

−x
2 , if x < 0

and g2(x) = x.

Then at 0, f2 is upper pseudocontinuous and g2 is continuous. However,

(f2 + g2)(x) =

{
x− 1, if x ≥ 0,
x
2 , if x < 0.

is not upper pseudocontinuous at 0.

Lemma 2.1 ([27], Proposition 2.3) Let X be a topological space. Then f : X → R̄ is pseudo-

continuous in X if and only if, for all sequences {xn} and {yn} in X, convergent to x and y,

respectively,

[f(y) < f(x)] ⇒ [lim sup f(yn) < lim inf f(xn)].

3 Quasiequilibrium problem (QEP).

We consider first parametric problem (QEP) stated in section 1. For well-posedness in gen-

eral topological settings we need the following facts which are well-known and often used in

sensitivity analysis (see e.g. [1-4] and references therein).

Remark 3.1 Let Q : X → 2Y be a multimap between two topological spaces. Then the

following assertions hold.

(i) If Q(x̄) is compact, then Q is usc at x̄ if and only if for any sequence {xn} convergent to

x̄ and yn ∈ Q(xn), there is a subsequence {ynk
} convergent to some y ∈ Q(x̄).

(ii) If, in addition, Q(x̄) = {ȳ} is a singleton then the above limit point y must be ȳ and the

whole {yn} converges to ȳ.

By S(λ) we denote the solution set of (QEPλ). For positive ε, the ε-solution set of (QEPλ) is

defined by

S̃(λ, ε) = {x ∈ K1(x, λ) | f(x, y, λ) + ε ≥ 0,∀y ∈ K2(x, λ)}.

When X and Λ are metric spaces, for positive ζ and ε, we define the following set of approximate

solutions of the family (QEP), allowing also the parametric to vary around the considered point,

Π(λ̄, ζ, ε) :=
⋃

λ∈B(λ̄,ζ)

S̃(λ, ε),

where B(λ̄, ζ) is the closed ball centered at λ̄ and with radius ζ.

Theorem 3.1 Assume that

(i) X is compact, K1 is closed and K2 is lsc in X × {λ̄};
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(ii) f is upper 0-level closed wrt id in K1(X, λ̄)×K2(X, λ̄)× {λ̄} × {0}.

Then (QEP) is well-posed at λ̄. Furthermore, if S(λ̄) is a singleton, then this problem is uniquely

well-posed at λ̄.

Proof. We first check that S̃(., .) is usc at (λ̄, 0). Suppose to the contrary the existence of an

open superset U of S̃(λ̄, 0) such that for all {(λn, εn)} convergent to (λ̄, 0) in Λ×R+, there is

xn ∈ S̃(λn, εn) such that xn /∈ U , for all n. By the compactness of X one can assume that {xn}
converges to some x0. Since K1 is closed at (x0, λ̄), x0 ∈ K1(x0, λ̄). If x0 /∈ S̃(λ̄, 0) = S(λ̄),

there is y0 ∈ K2(x0, λ̄) such that f(x0, y0, λ̄) < 0. The lower semicontinuity of K2 in turn shows

the existence of yn ∈ K2(xn, λn) such that {yn} → y0. As xn ∈ S̃(λn, εn), one has

f(xn, yn, λn) + εn ≥ 0.

By the upper 0-level closedness wrt id of f , we have

f(x0, y0, λ) ≥ 0,

which is a contradiction. Thus, x0 ∈ S̃(λ̄, 0) ⊆ U , which is another contradiction, since xn /∈ U ,

for all n. Hence, S̃ is usc at (λ̄, 0).

Now we prove that S(λ̄) is compact by checking its closedness. Let xn ∈ S(λ̄) converge to

x0. If x0 /∈ S(λ̄), there exists y0 ∈ K2(x0, λ̄) such that

f(x0, y0, λ̄) < 0.

In light of the lower semicontinuity of K2 there is yn ∈ K2(xn, λ̄) such that {yn} → y0. For all

n one has

f(xn, yn, λ̄) ≥ 0

as xn ∈ S(λ̄). By assumption (ii), one has

f(x0, y0, λ̄) ≥ 0,

which is impossible. Therefore, x0 ∈ S(λ̄) and hence S(λ̄) is compact. By Remark 3.1 we are

done. �

The assumptions of Theorem 3.1 are essential as indicated in the following examples.

Example 3.1 (the compactness of X cannot be dropped). Let X = R,Λ = R+, K1(x, λ) =

K2(x, λ) = R, λ̄ = 0 and f(x, y, λ) = 2x−y + λ. It is clear that in X × Λ, K1 is closed and K2

is lsc. (ii) holds as f is continuous in X ×X × Λ. But S(λ) = R for all λ ∈ Λ. Hence, (QEP)

is not well-posed at 0. Indeed, let λn = 1
n → 0 and xn = n ∈ S(λ̄n) for all n. It is clear that

{xn} has no convergent subsequence. The reason is that X is not compact.
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Example 3.2 (the closedness of K1 is essential). Let X = [−2, 1], Λ = [0, 1], K1(x, λ) = (−2λ, 1],

K2(x, λ) = [0, 1], λ̄ = 0 and f(x, y, λ) = x(x− y). It is not hard to see that X is compact, K2

is lsc in X × Λ, (ii) is fulfilled (by the continuity of f). But S(0) = {1} and S(λ) = {0, 1} for

all λ ∈ (0, 1]. Therefore, (QEP) is not well-posed at 0. The reason is that K1 is not closed at

X × {0}. Indeed, let xn = λn = 1
n and zn = − 1

n ∈ K1(xn, λn) = (− 2
n , 1]. We see that {zn}

tends to 0 /∈ K1(0, 0).

Example 3.3 (the lower semicontinuity of K2 cannot be dispensed). Let X = [−1, 1], Λ = [0, 1].

K1(x, λ) = [0, 1], f(x, y, λ) = x + y, λ̄ = 0 and

K2(x, λ) =

{
{−1, 0, 1}, if λ = 0,

{0, 1}, otherwise.

Then X is compact, K1 is closed in X×Λ and (ii) holds (by the continuity of f in X×X×Λ).

But S(0) = {1} and S(λ) = {0, 1} for all λ ∈ (0, 1]. Thus, (QEP) is not well-posed at 0. The

reason is that K2 is not lsc in X × {λ̄}.

Example 3.4 ((ii) cannot be dropped). Let X = [0, 1], Λ = [0, 1],K1(x, λ) ≡ K2(x, λ) = [0, 1]

and

f(x, y, λ) =

{
x− y, if λ = 0,

y − x, otherwise.

It is clear that assumption (i) is satisfied and S(0) = {1}. Let λn = εn = 1
n , and xn = 0 ∈

S̃(λn, εn). Then {xn} is an approximating sequence for (QEP) corresponding to {λn}. But

{xn} → 0 /∈ S(0) and hence {(QEPλ) : λ ∈ Λ} is not well-posed at λ̄ = 0. The reason is

that assumption (ii) is violated. Indeed, taking xn = 0, yn = 1, λn = 1
n and εn = 0, we have

{(xn, yn, λn, εn)} → (0, 1, 0, 0) and f(xn, yn, λn)+εn = f(0, 1, 1
n ) = 1 > 0 but f(0, 1, 0) = −1 <

0.

Remark 3.2 In the special case where K(x, λ) ≡ X, it is not hard to check that the assumption

(ii) for f can be reduced to the same condition for f(., y, .), for all y ∈ X. Therefore, Theorem

3.1 improves Theorem 3.3 in [12]. Indeed, it suffices to check assumption (ii) of Theorem 3.1

from the (assumed in [12]) monotonicity of f(., ., λ̄) and lower semicontinuity of f(x, ., .). If

{(xn, λn)} → (x, λ̄) and {εn} tends to 0+ are such that

f(xn, y, λ̄n) + εn ≥ 0,

then, by the monotonicity, the inequalities

f(y, x, λ̄) ≤ lim inf f(y, xn, λn) ≤ lim inf f(xn, y, λn) ≤ lim inf εn = 0

imply that f(x, y, λ̄) ≥ 0. Note further that we omit the hemicontinuity of f(., ., λ̄) and con-

vexity of f(x, ., λ̄) imposed in [12].

Theorem 3.2 Let X and Λ be metric spaces.
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(i) If (QEP) is uniquely well-posed at λ̄, then diamΠ(λ̄, ζ, ε) → 0+ as (ζ, ε) → (0+, 0+).

(ii) Conversely, if X is complete and the following conditions hold

(a) K1 is closed and K2 is lsc in X × {λ̄};

(ii) f is upper 0-level closed wrt id in K1(X, λ̄)×K2(X, λ̄)× {λ̄} × {0},

then (QEP) is uniquely well-posed at λ̄, provided that diamΠ(λ̄, ζ, ε) → 0+ as (ζ, ε) →
(0+, 0+).

Proof. (i) Suppose (QEP) is uniquely well-posed at λ̄, but there is {(ζn, εn)} → (0+, 0+) such

that there are n0 ∈ N (the set of the natural number) and r > 0 such that, for all n ≥ n0,

diamΠ(λ̄, ζn, εn) > r.

Then, there exist x1
n, x2

n ∈ Π(λ̄, ζn, εn) such that d(x1
n, x2

n) > r
2 . Consequently, there are

λ1
n, λ2

n ∈ B(λ̄, ζn) such that

f(x1
n, y, λ1

n) + εn ≥ 0,∀y ∈ K(x1
n, λ1

n)

and

f(x2
n, y, λ2

n) + εn ≥ 0,∀y ∈ K(x2
n, λ2

n),

i.e. {x1
n} and {x2

n} are approximating sequences for (QEP) corresponding to {λ1
n} and {λ2

n},
respectively. Hence, {x1

n} and {x2
n} converge to the unique solution of (QEPλ̄), contradicting

the fact that d(x1
n, x2

n) > r
2 > 0, for all n.

(ii) Let {λn} → λ̄ and {xn} be an approximating sequence for (QEP) corresponding to

{λn}. Then there is {εn} → 0+ such that, for all y ∈ K2(xn, λn) and all n ∈ N ,

f(xn, y, λn) + εn ≥ 0.

Consequently, xn belongs to Π(λ̄, ζn, εn) with {ζn} := {d(λn, λ̄)} → 0+ as n → +∞. Since

diamΠ(λ̄, ζn, εn) → 0+, {xn} is a Cauchy sequence and converges to some x̄. By the closedness

of K1 at (x̄, λ̄), x̄ ∈ K(x̄, λ̄). Using the same argument as for Theorem 3.1, we deduce that

x̄ ∈ S(λ̄). To complete the proof one shows that (QEPλ̄) has a unique solution. If S(λ̄) has

two distinct solutions x̄1 and x̄2, it is not hard to see that x̄1 and x̄2 belong to Π(λ̄, ζ, ε), for

all positive ζ and ε. It follows that

0 < d(x̄1, x̄2) ≤ diamΠ(λ̄, ζ, ε),

which is impossible. �

Remark 3.3 If K(x, λ) ≡ X, with the same argument as in Remark 3.2, we see that Theorem

3.2 improves Theorem 3.1 of [12]. Here we omit the hemicontinuity of f(., ., λ̄) and convexity

of f(x, ., λ̄), which are required in that theorem.
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The following example shows that we cannot replace the assumed unique well-posedness in

Theorem 3.2 (i) by well-posedness.

Example 3.5 Let X = Λ = [0, 1],K1(x, λ) ≡ K2(x, λ) = [0, 1] and f(x, y, λ) = 1. Then (QEP)

is well-posed in Λ. But Π(λ, ζ, ε) = [0, 1] and hence its diameter does not converge to 0.

Now we need the following notions of measures of noncompactness.

Definition 3.1 Let M be a nonempty subset of a metric space X.

(i) The Kuratowski measure of M is

µ(M) = inf{ε > 0 | M ⊆
n⋃

k=1

Mk and diamMk ≤ ε, k = 1, ..., n, for some n ∈ N}.

(ii) The Hausdorff measure of M is

η(M) = inf{ε > 0 | M ⊆
n⋃

k=1

B(xk, ε), xk ∈ X, for some n ∈ N}.

The following inequalities are obtained in [10]

η(M) ≤ µ(M) ≤ 2η(M).

The measures µ and η share many properties and we will use γ in the sequel to denote either

one of them. γ is a regular measure (see [6, 28]), i.e. it enjoys the following properties

(a) γ(M) = +∞ if and only if the set M is unbounded;

(b) γ(M) = γ(clM);

(c) from γ(M) = 0 it follows that M is a totally bounded set;

(d) if X is a complete space and if {An} is a sequence of closed subsets of X such that

An+1 ⊆ An for each n ∈ N and limn→+∞ γ(An) = 0, then K :=
⋂

n∈N An is a nonempty

compact set and limn→+∞H(An,K) = 0+, where H is the Hausdorff metric;

(e) from M ⊆ N it follows that γ(M) ≤ γ(N).

Theorem 3.3

(i) If (QEP) is well-posed at λ̄, then γ(Π(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+).

(ii) Conversely, if X is complete, Λ is compact or finite dimensional and the following con-

ditions hold

(a) K1 is closed and K2 is lsc in X × Λ;

(b) f is upper b-level closed in K1(X, Λ)×K2(X, Λ)× Λ, for all b < 0,

then (QEP) is well-posed at λ̄, provided that γ(Π(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+).
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Proof. Let γ be the Hausdorff measure η (for the Kuratowski measure case the argument is

similar).

(i) Assume that (QEP) is well-posed at λ̄ and (ζ, ε) → (0+, 0+). Since S(λ̄) ⊆ Π(λ̄, ζ, ε)

for all ζ, ε > 0,

H(Π(λ̄, ζ, ε)), S(λ̄)) = H∗(Π(λ̄, ζ, ε), S(λ̄)),

where H∗(A,B) = supa∈A d(a,B) and d(a,B) = infb∈B d(a, b). Let {xn} be any sequence in

S(λ̄). Since {xn} is an approximating sequence for (QEP), there is subsequence convergent to

some point of S(λ̄). Hence, S(λ̄) is compact.

If S(λ̄) ⊆
⋃n

k=1 B(zk, ε), then

Π(λ̄, ζ, ε) ⊆
n⋃

k=1

B
(
zk, ε + H

(
Π(λ̄, ζ, ε), S(λ̄)

))
and hence

η(Π(λ̄, ζ, ε)) ≤ H
(
Π(λ̄, ζ, ε), S(λ̄)) + γ(S(λ̄)

)
.

Since S(λ̄) is compact, η(S(λ̄)) = 0. So we have

η(Π(λ̄, ζ, ε)) ≤ H(Π(λ̄, ζ, ε), S(λ̄)).

Now we claim that H(Π(λ̄, ζ, ε), S(λ̄)) → 0+ as (ζ, ε) → (0+, 0+). Indeed, suppose to the

contrary that there are ρ > 0, {(ζn, εn)} → (0+, 0+) and xn ∈ Π(λ̄, ζn, εn) such that, for all

n ∈ N ,

d(xn, S(λ̄)) ≥ ρ.

Since {xn} is an approximating sequence for (QEP), there is a subsequence convergent to some

point of S(λ̄), a contradiction.

(ii) Assume that η(Π(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+). We first prove that Π(λ̄, ζ, ε)

is closed for all positive ζ and ε. Let xn ∈ Π(λ̄, ζ, ε) be such that {xn} → x. Then, for each

n ∈ N , there is λn ∈ B(λ̄, ζ) such that, for all y ∈ K2(xn, λn),

f(xn, y, λn) + ε ≥ 0.

Since B(λ̄, ζ) is compact, we can assume that {λn} → λ for some λ ∈ B(λ̄, ζ). By the closedness

of K1 at (x, λ), x ∈ K1(x, λ). We claim that, for all y ∈ K2(x, λ),

f(x, y, λ) + ε ≥ 0.

Indeed, if there exists y ∈ K2(x, λ) such that f(x, y, λ) + ε < 0, there is yn ∈ K2(xn, λn) such

that {yn} → y as K2 is lsc at (x, λ). By the upper −ε-level closedness of f at (x, y, λ), there is

n0 ∈ N such that, for all n ≥ n0,

f(xn, yn, λn) < −ε,

12



a contradiction. Since λ ∈ B(λ̄, ζ), we have x ∈ Π(λ̄, ζ, ε). Hence, Π(λ̄, ζ, ε) is closed.

Now we show that S(λ̄) =
⋂

ζ>0,ε>0 Π(λ̄, ζ, ε). We first check that
⋂

ζ>0 Π(λ̄, ζ, ε) = S̃(λ̄, ε).

Indeed, it is easy to see that
⋂

ζ>0 Π(λ̄, ζ, ε) ⊇ S̃(λ̄, ε). Let x ∈
⋂

ζ>0 Π(λ̄, ζ, ε). There is

λn ∈ B(λ̄, ζ) such that, for all y ∈ K2(x, λn), f(x, y, λn)+ε ≥ 0. Since x ∈ K1(x, λn), {λn} → λ̄

and K1 is closed, one sees that x ∈ K1(x, λ̄). Now we verify that x ∈ S̃(λ̄, ε). Indeed, for each

y ∈ K2(x, λ̄), since K2 is lsc at (x, λ̄), there exists yn ∈ K2(x, λn) with {yn} → y. Since

x ∈ S̃(λn, ε),

f(x, yn, λn) + ε ≥ 0.

By the upper −ε-level closedness of f , one has

f(x, y, λ̄) + ε ≥ 0,

i.e.
⋂

ζ>0 Π(λ̄, ζ, ε) ⊆ S̃(λ̄, ε). Hence,
⋂

ζ>0 Π(λ̄, ζ, ε) = S̃(λ̄, ε). Next, we have S(λ̄) =⋂
ε>0 S̃(λ̄, ε) =

⋂
ζ>0,ε>0 Π(λ̄, ζ, ε).

Since η(Π(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+), the regular measure properties of η imply

that S(λ̄) is compact and H(Π(λ̄, ζ, ε), S(λ̄)) → 0+ as (ζ, ε) → (0+, 0+).

Let xn be an approximating sequence for (QEP) corresponding to {λn}, where {λn} → λ̄.

There is {εn} → 0+ such that, for all y ∈ K2(xn, λn) and all n ∈ N ,

f(xn, y, λn) + εn ≥ 0.

This means that xn ∈ Π(λ̄, ζn, εn) with ζn := d(λ̄, λn). We see that

d(xn, S(λ̄)) ≤ H(Π(λ̄, ζn, εn), S(λ̄)) → 0+.

Hence, there is x̄n ∈ S(λ̄) such that

d(xn, x̄n) → 0 as n →∞.

By the compactness of S(λ̄), there is a subsequence {x̄nk
} of {x̄n} convergent to some point x̄

of S(λ̄). Therefore, the corresponding subsequence {xnk
} of {xn} tends to x̄. Hence, (QEP) is

well-posed at λ̄. �

The following examples show that the assumptions of Theorem 3.3 (ii) are essential.

Example 3.6 Let X = R,Λ = [0, 1], K1(x, λ) = (−λ, 1], K2(x, λ) ≡ [0, 1], f(x, y, λ) = x(x− y)

and λ̄ = 0. It is easy to see that X is complete, Λ is compact, K2 is lsc in X × Λ. Condition

(ii b) holds since f is continuous in X × X × Λ. Moreover, Π(0, ζ, ε) ⊆ [−1, 1] and hence

γ(Π(0, ζ, ε)) = 0. But S(0) = {1} and S(λ) = {0, 1} for all λ ∈ (0, 1]. Hence, (QEP) is not

well-posed at 0. The reason is that K1 is not closed at (0, 0). Indeed, let xn = λn = 1
n and

zn = 1
n ∈ K1(xn, λn). We see that zn → 0 /∈ K1(0, 0), and hence K1 is not closed at (0, 0).
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Example 3.7 Let X, Λ and λ̄ be as in Example 3.6, K1(x, λ) = [0, 1], f(x, y, λ) = x + y and

K2(x, λ) =

{
{−1, 0, 1}, if λ = 0,

{0, 1}, otherwise.

It is not hard to see that X is complete, Λ is compact, K1 is closed in X×Λ. (ii b) is satified as

f is continuous in X ×X × Λ. Π(0, ζ, ε) ⊆ [0, 1] and hence γ(Π(0, ζ, ε)) = 0. But S(0) = {1},
S(λ) = {0, 1} for all λ ∈ (0, 1]. Thus, (QEP) is not well-posed at 0. The reason is that K2 is

not lsc in X × Λ.

Example 3.8 Let X, Λ, K1, λ̄ be as in Example 3.7, K2(x, λ) = {λ, 1 + λ} and

f(x, y, λ) =

{
−1, if x + y = 1,

1, otherwise.

It is clear that X is complete, Λ is compact, (ii a) holds and γ(Π(0, ζ, ε)) = 0. But S(0) = (0, 1),

S(λ) = [0, 1] for all λ ∈ (0, 1]. Therefore, (QEP) is not well-posed at 0. The reason is that

assumption (iib) is violated. Indeed, let (xn, yn, λn) = ( 1
n , 1− 2 1

n , 1
n ). We see that

f(xn, yn, λn) = 1 ≥ −1
2
.

But {(xn, yn, λn)} → (0, 1, 0) and

f(0, 1, 0) = −1 6≥ −1
2
.

Remark 3.4 In the special case where K(x, λ) ≡ X, it is easy to see that assumption (iib) of

Theorem 3.3 can be reduced to the corresponding one of f(., y, λ), for all y ∈ X. Theorem

3.2 of [12] has the same conclusion as Theorem 3.3, but only for the Kuratowski measure µ.

Observe that the upper semicontinuity of f(., y, .), required in that theorem, implies the upper

b-level closednees of f(., y, .) for all b < 0 as imposed in Theorem 3.3. Note further that (see

Proposition 2.1 of [5]) the upper semicontinuity of f(., y, .) is equivalent to the upper b-level

closedness of f(., y, .) for all b.

The following example gives a case where Theorem 3.3 is easy to be employed, but Theorem

3.2 of [12] does not work.

Example 3.9 Let X = Λ = [0, 1], K1(x, λ) = K2(x, λ) = [0, 1], λ̄ = 0 and

f(x, y, λ) =

{
0, if λ ∈ [0, 1] ∩Q,

1, if λ ∈ [0, 1] ∩ (R \Q).

Then the assumptions in (ii) of Theorem 3.3 are satified, and hence this theorem yields the

well-posedness of (QEP) at 0. (In fact, S(λ) = [0, 1] for all λ ∈ [0, 1].) But f(., y, .) is not usc

in X × Λ, and hence Theorem 3.2 of [12] is not in use.

14



4 Quasioptimization Problem (QOP).

We first investigate parametric well-posedness of this problem in topological settings.

Theorem 4.1 Assume that

(i) X is compact and K is closed and lsc in X × {λ̄};

(ii) g is pseudocontinuous in K(X, λ̄)× {λ̄}.

Then (QOP) is well-posed at λ̄. Furthermore, if (QOP) has a unique solution, this problem is

uniquely well-posed at λ̄.

Proof. By setting K1(x, λ) = K2(x, λ) = K(x, λ), for all (x, λ) ∈ X × Λ and f(x, y, λ) =

g(y, λ)−g(x, λ), (QOP) becomes a special case of (QEP). To apply Theorem 3.1 we check its as-

sumption (ii). Let xn and yn be in K(X, λn) and εn ∈ (0,+∞) be such that {(xn, yn, λn, εn)} →
(x, y, λ̄, 0) and

f(xn, yn, λn) + εn ≥ 0.

There are x̄n and ȳn in X such that xn ∈ K(x̄n, λn) and yn ∈ K(ȳn, λn). Due to the compact-

ness of X one can assume that {x̄n} → x̄ and {ȳn} → ȳ, for some x̄, ȳ ∈ X. As K is closed in

X × {λ̄}, we have x̄ ∈ K(x̄, λ̄) and ȳ ∈ K(ȳ, λ̄).

Now suppose ad absurdum that

g(y, λ̄) < g(x, λ̄).

By Lemma 2.1 we have

lim sup g(yn, λn) < lim inf g(xn, λn).

Hence, there are t1, t2 ∈ R and n0 ∈ N such that, for n ≥ n0,

g(yn, λn) ≤ t1 < t2 ≤ g(xn, λn)

and then

g(yn, λn)− g(xn, λn) ≤ t1 − t2 < 0,

which is impossible and we are done. �

Let m : X × Λ → R be the following kind of marginal functions

m(x, λ) := inf{g(y, λ) | y ∈ K(x, λ)}.

When (QOP) is given on metric spaces, similarly as for (QEP) we define S̃ and Π as follows

S̃(λ, ε) = {x ∈ K(x, λ) | g(x, λ) ≤ m(x, λ) + ε},

Π(λ̄, ζ, ε) =
⋃

λ∈B(λ̄,ζ)

S̃(λ, ε).

15



Theorem 4.2 Assume that

(i) X is compact and K is closed in X × {λ̄};

(ii) g is lower pseudocontinuous in K(X, λ̄)× {λ̄};

(iii) m is usc in K(X, λ̄)× {λ̄}.

Then (QOP) is well-posed at λ̄. Furthermore, if (QOP) has a unique solution, it is uniquely

well-posed at λ̄.

Proof. We check first that S̃ is usc at (λ̄, 0). Suppose to the contrary the existence of an

open superset U of S̃(λ̄, 0) such that for all {(λn, εn)} convergent to (λ̄, 0+) in Λ × R+, there

is xn ∈ S̃(λn, εn) such that xn /∈ U , for all n. By the compactness of X one can assume that

{xn} tends to some x0. Since K is closed at (x0, λ̄), x0 ∈ K(x0, λ̄). If x0 /∈ S̃(λ̄, 0) = S(λ̄),

there is y0 ∈ K(x0, λ̄) such that

g(y0, λ̄) < g(x0, λ̄).

Since g is lower pseudocontinuous at (x0, λ̄), we have

m(x0, λ̄) ≤ g(y0, λ̄) < lim inf g(xn, λn).

The upper semicontinuity of m at (x0, λ̄) yields some t ∈ R such that

lim sup m(xn, λn) < t < lim inf g(xn, λn).

Hence, there is n0 ∈ N such that, for all n ≥ n0,

m(xn, λn)− g(xn, λn) < t− g(xn, λn).

As xn ∈ S̃(λn, εn),

−εn ≤ m(xn, λn)− g(xn, λn) ≤ 0.

Therefore,

0 = lim
n→+∞

[m(xn, λn)− g(xnλn)] ≤ t− lim inf
n→+∞

g(xn, λn) < 0.

This contradiction shows that x0 ∈ S(λ̄). Then another contradiction is obtained as xn /∈ U .

Thus, S̃ is usc at (λ̄, 0). Now we prove that S(λ̄) is compact by checking its closedness. Let

{xn} ⊆ S(λ̄) converge to x0. As S(λ̄) ⊆ S̃(λ̄, εn), by the preceding argument one sees that

x0 ∈ S(λ̄). By Remark 3.1, (QOP) is well-posed at λ̄. �

The following examples explain that Theorems 4.1 and 4.2 are incomparable and each of

them may be applicable in different situations.

Example 4.1 Let X = Λ = [0, 1],K(x, λ) = [0, 1], λ̄ = 1 and

g(x, λ) =

{
(1 + x)(1− λ), if 0 ≤ λ < 1,

−1, if λ = 1.
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It is clear that K is continuous, X is compact and g is lower pseudocontinuous in [0, 1]× [0, 1].

Now we check that g is upper pseudocontinuous at (x, 1), for all x ∈ [0, 1]. Indeed, assume

that g(y, λ) > g(x, 1) = −1 and {(xn, λn)} → (x, 1). It is clear that, g(y, λ) > 0 as λ < 1

and lim supn→+∞ g(xn, λn) = 0, so g(y, λ) > lim supn→+∞ g(xn, λn). Hence, the assumptions

of Theorem 4.1 are satisfied and we obtain the well-posedness at 1 (in fact, S(1) = [0, 1] and

S(λ) = {0} for all 0 ≤ λ < 1). However,

m(x, λ) ≡ m(λ) =

{
1− λ, if 0 ≤ λ < 1,

−1, if λ = 1

is not usc at 1. Therefore, Theorem 4.2 cannot be applied in this case.

Example 4.2 Let X = Λ = [0, 1],K(x, λ) = [0, 1], λ̄ = 0 and

g(x, λ) =


0, if λ = 0 and 0 ≤ x < 1,

λ(1− x), if 0 < λ ≤ 1 and 0 ≤ x < 1,

−1, if x = 1.

Then K is continuous and X is compact. g is lower pseudocontinuous at (x, 0), for all x ∈ [0, 1].

Indeed, if g(y, λ) < g(x, 0) then x < 1, and hence g(x, 0) = 0. So g(y, λ) = −1 and y = 1.

If {(xn, λn)} → (x, 0), there is n0 ∈ N such that, for all n ≥ n0, xn < 1. So, we have

lim inf g(xn, λn) = 0. Thus, g(y, λ) < lim inf g(xn, λn), i.e, g is lower pseudocontinuous at

(x, 0). However, g is not upper pseudocontinuous in [0, 1]× {0}. Indeed, let y = 1
2 and λ = 0.

Then

0 = g(
1
2
, 0) > g(1, 0) = −1.

Take xn = 1− 1
n+1 and λn = 1

n+1 . Then {(xn, λn)} → (1, 0) as n → +∞. It is easy to see that

lim sup g(xn, λn) = lim supλn(1− xn) = 0,

and hence g( 1
2 , 0) 6> lim sup g(xn, λn)). Therefore, Theorem 4.1 is not in use. Fortunately, the

assumptions of Theorem 4.2 are satisfied, since m(x, λ) ≡ m(λ) = infx∈[0,1] g(x, λ) = −1, for all

λ ∈ [0, 1] and hence m is continuous in [0, 1]. Theorem 4.2 yields the well-posedness of (QOP)

at 0 (in fact, S(λ) = {1}, for all λ ∈ [0, 1]).

Now we pass to well-posedness conditions in terms of the diameter of Π(λ, ζ, ε).

Theorem 4.3 Assume that X is a metric space.

(i) If (QOP) is uniquely well-posed at λ̄, then diamΠ(λ̄, ζ, ε) → 0+ as (ζ, ε) → (0+, 0+),

where diam(.) denotes the diameter of the set (.).

(ii) Conversely, assume that X is complete and the following conditions hold

(a) K is closed and lsc in X × {λ̄};

(b) either of the following two conditions holds
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(b1) g is pseudocontinuous in K(X, λ̄)× {λ̄};
(b2) in K(X, λ̄)× {λ̄}, g is lower pseudocontinuous and m is usc.

Then (QOP) is uniquely well-posed at λ̄, provided that diamΠ(λ̄, ζ, ε) → 0+ as (ζ, ε) →
(0+, 0+).

Proof. (i) Suppose (QOP) is uniquely well-posed at λ̄ but, for {(ζn, εn)} → (0+, 0+), there

are n0 ∈ N and r > 0 such that, for all n ≥ n0,

diamΠ(λ̄, ζn, εn) > r.

Then, there exist x1
n, x2

n ∈ Π(λ̄, ζn, εn) such that d(x1
n, x2

n) > r
2 . There are λ1

n, λ2
n ∈ B(λ̄, ζn)

such that

g(x1
n, λ1

n) ≤ m(x1
n, λ1

n) + εn

and

g(x2
n, λ2

n) ≤ m(x2
n, λ2

n) + εn.

Since {x1
n} and {x2

n} are approximating sequences for (QOP) corresponding to {λ1
n} and {λ2

n},
respectively, they converge to the unique solution and we obtain a contradiction.

(ii) Assume that {λn} → λ̄ and {xn} is an approximating sequence for (QOP) correspond-

ing to {λn}. Then, there is {εn} → 0+ such that, for all n ∈ N ,

g(xn, λn) ≤ m(xnλn) + εn.

Hence xn belongs to Π(λ̄, ζn, εn) with ζn := d(λn, λ̄). Since limn→+∞ diamΠ(λ̄, ζn, εn) = 0+,

{xn} is a Cauchy sequence and hence converges to some x̄. The closedness of K1 implies that

x̄ ∈ K(x̄, λ̄). Using the same argument as for Theorem 4.1 for the case (b1) or Theorem 4.2 for

the case (b2), we see that x̄ ∈ S(λ̄). To complete the proof, we have to show that (QOPλ̄) has a

unique solution. If S(λ̄) has two distinct solutions x̄1 and x̄2, they clearly belong to Π(λ̄, ζ, ε),

for all positive ζ and ε. This implies the contradiction that

0 < d(x̄1, x̄2) ≤ diamΠ(λ̄, ζ, ε). �

Theorem 4.4

(i) γ(Π(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+), if (QOP) is well-posed at λ̄ (recall that γ is the

Kuratowski measure or Hausdorff measure).

(ii) Conversely, assume that X is complete and Λ is compact or finite dimensional. Impose

further that,

(a) K is closed in X × Λ;

(b) g is lsc in K(X, Λ)× Λ;

(c) m is usc in K(X, Λ)× Λ.
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Then (QOP) is well-posed at λ̄, provided that γ(Π(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+).

Proof. By the similarity we discuss only the case where γ = µ, the Kuratowski measure.

(i) Assume that (QOP) is well-posed at λ̄. Since, for all positive ζ and ε, S(λ̄) ⊆ Π(λ̄, ζ, ε),

one has

H(Π(λ̄, ζ, ε)), S(λ̄)) = H∗(Π(λ̄, ζ, ε), S(λ̄)).

Let {xn} be a sequence in S(λ̄). Then {xn} is an approximating sequence for (QOP) and has

a subsequence convergent to some point of S(λ̄). Hence, S(λ̄) is compact.

Let S(λ̄) ⊆
⋃n

k=1 Mk with diamMk ≤ ε, for k = 1, ..., n. Setting

Nk = {z ∈ X | d(z,Mk) ≤ H(Π(λ̄, ζ, ε), S(λ̄))}.

We claim that

Π(λ̄, ζ, ε) ⊆
n⋃

k=1

Nk.

Indeed, let x ∈ Π(λ̄, ζ, ε). Then d(x, S(λ̄)) ≤ H(Π(λ̄, ζ, ε), S(λ̄)). Since S(λ̄) ⊆
⋃n

k=1 Mk,

we see that d(x,
⋃n

k=1 Mk) ≤ H(Π(λ̄, ζ, ε), S(λ̄)). Hence, there is k̄ such that d(x,Mk̄) ≤
H(Π(λ̄, ζ, ε), S(λ̄)), i.e. x ∈ Nk̄. So, Π(λ̄, ζ, ε) ⊆

⋃n
k=1 Nk. Note further that

diamNk = diamMk + 2H
(
Π(λ̄, ζ, ε), S(λ̄)

)
≤ ε + 2H

(
Π(λ̄, ζ, ε), S(λ̄)

)
,

and hence, as µ(S(λ̄)) = 0,

µ(Π(λ̄, ζ, ε)) ≤ 2H
(
Π(λ̄, ζ, ε), S(λ̄)

)
+ µ(S(λ̄)) = 2H(Π(λ̄, ζ, ε), S(λ̄)).

Now we prove that H(Π(λ̄, ζ, ε), S(λ̄)) → 0+ as (ζ, ε) → (0+, 0+). Suppose to the con-

trary that there are ρ > 0, {(ζn, εn))} → (0+, 0+) and xn ∈ Π(λ̄, ζn, εn) such that, for all

n ∈ N ,

d(xn, S(λ̄)) ≥ ρ.

Since {xn} is an approximating sequence for (QOP), it has a subsequence convergent to some

point of S(λ̄), a contradiction. Therefore, µ(Π(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+).

(ii) Assume that µ(Π(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+). We first show that Π(λ̄, ζ, ε)

is closed for all positive ζ and ε. Let xn ∈ Π(λ̄, ζ, ε) and {xn} → x. Then, for each n ∈ N ,

there is λn ∈ B(λ̄, ζ) such that

g(xn, λn) ≤ m(xn, λn) + ε.

Because B(λ̄, ζ) is compact, we assume that {λn} → λ for some λ ∈ B(λ̄, ζ). Since K is closed

at (x, λ), x ∈ K(x, λ). By the lower semicontinuity of g and the upper semicontinuity of m at

(x, λ), we have

g(x, λ) ≤ m(x, λ) + ε.
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As λ ∈ B(λ̄, ζ) we have x ∈ Π(λ̄, ζ, ε). Hence, Π(λ̄, ζ, ε) is closed. Note further that S(λ̄) =⋂
ζ>0,ε>0 Π(λ̄, ζ, ε) and µ(Π(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+). From the properties of µ it

follows that S(λ̄) is compact and

H(Π(λ̄, ζ, ε), S(λ̄)) → 0+.

Let {xn} be an approximating sequence for (QOP) corresponding to {λn}, where {λn} → λ̄.

There is {εn} → 0+ such that, for all n ∈ N ,

g(xn, λn) ≤ m(xn, λn) + εn.

Consequently, xn ∈ Π(λ̄, ζn, εn) with ζn := d(λ̄, λn). We see that

d(xn, S(λ̄)) ≤ H(Π(λ̄, ζn, εn), S(λ̄)) → 0+.

By the compactness of S(λ̄), there is a subsequence of {xn} converging to some point of S(λ̄).

Hence, (QOP) is well-posed at λ̄. �

Theorem 4.5 Assume that X is complete and Λ is compact or finite dimensional. Let the

following conditions hold

(a) K is closed and lsc in X × Λ;

(b) g is continuous in K(X, Λ)× Λ.

Then (QOP) is well-posed at λ̄, provided that γ(Π(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+).

Proof. We consider only the case γ = µ. Let µ(Π(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+). We

prove that Π(λ̄, ζ, ε) is closed for all positive ζ and ε. Let xn ∈ Π(λ̄, ζ, ε) and {xn} → x. Then,

for each n ∈ N , there is λn ∈ B(λ̄, ζ) such that

g(xn, λn) ≤ m(xn, λn) + ε.

As B(λ̄, ζ) is compact, we assume that {λn} → λ for some λ ∈ B(λ̄, ζ). Then x ∈ K(x, λ) as

K is closed at (x, λ). Now we show that,

g(x, λ) ≤ m(x, λ) + ε.

By the lower semicontinuity of g at (x, λ) we have

g(x, λ) ≤ lim inf g(xn, λn) ≤ lim inf m(xn, λn) + ε.

Hence, it is sufficient to check that

lim inf m(xn, λn) ≤ m(x, λ),

that is

lim inf inf
y∈K(xn,λn)

g(y, λn) ≤ inf
y∈K(x,λ)

g(y, λ).
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Suppose to the contrary the existence of δ > 0 such that

lim inf inf
y∈K(xn,λn)

g(y, λn) = inf
y∈K(x,λ)

g(y, λ) + δ.

Then, there is y0 ∈ K(x, λ) such that

lim inf inf
y∈K(xn,λn)

g(y, λn) > g(y0, λ) +
δ

2
.

Since K is lsc at (x, λ), there is yn ∈ K(xn, λn) such that {yn} → y0. Taking into account the

upper semicontinuity of g at (y0, λ), one has

g(y0, λ) ≥ lim sup g(yn, λn) ≥ lim inf inf
y∈K(xn,λn)

g(y, λn) > g(y0, λ) +
δ

2
,

which is a contradiction. Therefore, as λ ∈ B(λ̄, ζ), we have x ∈ Π(λ̄, ζ, ε). Hence, Π(λ̄, ζ, ε) is

closed. The further argument is the same as the last part of the proof of Theorem 4.4. �

Examples 4.1 and 4.2 show also that Theorems 4.4 and 4.5 are incomparable.

Remark 4.1 In the special case where K(x, λ) ≡ K(λ), i.e. (QOP) becomes to an optimization

problem, Theorems 4.1-4.3 collapse to Theorems 4.1-4.3 of [27]. Theorems 4.4 and 4.5 are new

even for this special case.

5 Equilibrium problems with equilibrium constraints (EPEC).

This section is devoted to well-posedness conditions for (EPEC). For positive ζ and ε, the

corresponding approximate solution set of (EPEC) is defined by

Γ(ζ, ε) = {x = (x, λ) ∈ K1(x, λ)× Λ | F (x,y) + ε ≥ 0,∀y ∈ grS and

f(x, y, λ) + ζ ≥ 0,∀y ∈ K2(x, λ)}.

Theorem 5.1 Assume that X is compact and

(i) in X × Λ, K1 is closed and K2 is lsc;

(ii) f is upper 0-level closed wrt id in K1(X, Λ)×K2(X, Λ)× Λ× {0};

(iii) F (.,y) is upper 0-level closed wrt id in X × Λ, for all y ∈ X × Λ.

Then (EPEC) is well-posed. Furthermore, if S(λ) is a singleton for all λ ∈ Λ and (EPEC)

admits a unique solution x̄, then (EPEC) is uniquely well-posed.

Proof. Let {xn} := {(xn, λn)} be an approximating sequence for (EPEC). Assume that

{λn} → λ̄. In light of Theorem 3.1, {(QEPλ) : λ ∈ Λ} is parametrically well-posed. Since {xn}
is an approximating sequence, there is a subsequence, still denoted by {xn}, convergent to some
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x̄ ∈ S(λ̄). We show that x̄ := (x̄, λ̄) is a solution of (EPEC). As {xn} is an approximating

sequence, there exists {εn} → 0+ such that, for all y ∈ grS,

F (xn,y) + εn ≥ 0.

The upper 0-level closedness of F implies that, for all y ∈ grS,

F (x̄,y) ≥ 0,

i.e. x̄ is a solution. Thus, (EPEC) is well-posed at λ̄.

To check the unique well-posedness under the additional conditions, let {xn} be an ap-

proximating sequence for (EPEC). By the same argument as in the preceding part, there is a

subsequence convergent to x̄. If {xn} did not converge to x̄, there would be an open set U con-

taining x̄ such that some subsequence was outside U . By the above argument, this subsequence

has a subsequence convergent to x̄, a contradiction. �

The assumptions of Theorem 5.1 cannot be dispensed as indicated in the following examples.

Example 5.1 (the compactness of X cannot be dropped). Let X = R,Λ = [0, 1], K1(x, λ) =

K2(x, λ) = R, f(x, y, λ) = 2λ and F ((x, λ1), (y, λ2)) = 2x+y. It is clear that in X × Λ,

K1 is closed and K2 is lsc. (ii) and (iii) hold as f and F are continuous in X × X × Λ and

(X×Λ)×(X×Λ), respectively. Furthermore, the solutions set of (EPEC) is grS. But S(λ) = R
for all λ ∈ Λ, i.e. grS = {(R, λ) | λ ∈ [0, 1]}. Hence, (EPEC) is not well-posed. Indeed, let

xn = n, λn = 1
n , xn = (xn, λn) is a solution of (EPEC). It is clear that {xn} has no convergent

subsequence. The reason is that X is not compact.

Example 5.2 (the closedness of K1 is essential). Let X = [−1, 1], Λ = [0, 1], K1(x, λ) = (−λ, 1],

K2(x, λ) = [0, 1], f(x, y, λ) = x(x − y) and F ((x, λ1), (y, λ2)) = 1. It is not hard to see that

X is compact, K2 is lsc in X × Λ, (ii) and (iii) are satisfied (by the continuity of f and F ).

We see also that the solution set of (EPEC) is grS. But S(0) = {1} and S(λ) = {0, 1} for all

λ ∈ (0, 1], i.e. grS = (1, 0) ∪ {(k, λ) | k = 0, 1;λ ∈ (0, 1]}. Therefore, (EPEC) is not well-posed.

Indeed, let xn = 0, λn = 1
n , then xn = (xn, λn) is a solution of (EPEC) and xn converges to

x = (0, 1). But x does not belong to the solutions set of (EPEC). The reason is that K1 is not

closed at X × Λ. Indeed, let xn = λn = 1
n and zn = − 1

2n ∈ K1(xn, λn) = (− 1
n , 1]. We see that

{zn} tends to 0 /∈ K1(0, 0).

Example 5.3 (the lower semicontinuity of K2 cannot be dispensed). Let X = [−1, 1], Λ = [0, 1],

K1(x, λ) = [0, 1], f(x, y, λ) = x + y, F ((x, λ1), (y, λ2)) = 2λ1+λ2 and

K2(x, λ) =

{
{−1, 0, 1}, if λ = 0,

{0, 1}, otherwise.

It is clear that X is compact, K1 is closed in X ×Λ, (ii) and (iii) hold. Moreover, the solutions

set of (EPEC) coincides with grS. But S(0) = {1}, S(λ) = {0, 1} for all λ ∈ (0, 1], i.e.
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grS = (1, 0) ∪ {(k, λ) | k = 0, 1;λ ∈ (0, 1]}. By the same argument as in Example 5.2, (EPEC)

is not well-posed. The reason is that K2 is not lsc in X × Λ.

Example 5.4 ((ii) cannot be dropped). Let X = [0, 1], Λ = [0, 1],K1(x, λ) ≡ K2(x, λ) = [0, 1],

F ((x, λ1), (y, λ2)) = 0 and

f(x, y, λ) =

{
x− y, if λ = 0,

y − x, otherwise.

Then assumptions (i) and (iii) are satisfied and the solution set of (EPEC) is grS. We see that

S(0) = {1} and S(λ) = {0} for all λ ∈ (0, 1], and hence grS = (1, 0) ∪ {(0, λ) | λ ∈ (0, 1]}.
By an argument similar to that in Example 5.2, we also see that (EPEC) is not well-posed.

The reason is that assumption (ii) is violated. Indeed, taking xn = 0, yn = 1, λn = 1
n and

εn = 0, we have {(xn, yn, λn, εn)} → (0, 1, 0, 0) and f(xn, yn, λn) + εn = f(0, 1, 1
n ) = 1 > 0 but

f(0, 1, 0) = −1 < 0.

Example 5.5 ((iii) is essential). Let X = [0, 1], Λ = [0, 1],K1(x, λ) ≡ K2(x, λ) = [0, 1],

f(x, y, λ) = 1 and

F ((x, λ1), (y, λ2)) =

{
x− y, if λ1 = 0,

y − x, otherwise.

Then assumptions (i) and (ii) are satisfied and the solution set of (QEP) is equal to X. It is

easy to see that the solution set of (EPEC) is the following subset of grS

S = (1, 0) ∪ {(0, λ) | λ ∈ (0, 1]}.

By the same argument as in Example 5.2, we also see that (EPEC) is not well-posed. Similarly

as in Example 5.4, we can check that assumption (iii) is violated.

Theorem 5.2 Let X and Λ be metric spaces.

(i) If (EPEC) is uniquely well-posed at λ̄, then diamΓ(ζ, ε) → 0+ as (ζ, ε) → (0+, 0+).

(ii) Conversely, if X and Λ are complete and the following conditions hold

(a) in X × Λ, K1 is closed and K2 is lsc;

(b) f is upper 0-level closed wrt id in K1(X, Λ)×K2(X, Λ)× Λ× {0};

(c) F (.,y) is upper 0-level closed wrt id in X × Λ, for all y ∈ X × Λ,

then (EPEC) is uniquely well-posed at λ̄, provided that diamΓ(ζ, ε) → 0+ as (ζ, ε) →
(0+, 0+).

Proof. (i) Assume that (EPEC) is uniquely well-posed. Suppose to the contrary the existence

of {(ζn, εn)} → (0+, 0+), n0 ∈ N and r > 0 such that, for all n ≥ n0,

diamΓ(ζn, εn) > r.
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Hence, there exist (x1
n, λ1

n), (x2
n, λ2

n) ∈ Γ(ζn, εn) such that d((x1
n, λ1

n), (x2
n, λ2

n)) > r
2 . Since

{(x1
n, λ1

n)} and {(x2
n, λ2

n)} are approximating sequences, they converge to the unique solution

and we obtain a contradiction.

(ii) Assume that {xn} := {(xn, λn)} is an approximating sequence for (EPEC). Then,

xn = (xn, λn) ∈ Γ(ζn, εn) and {xn} is a Cauchy sequence and converges to some x̄ = (x̄, λ̄).

Since K1 is closed at (x̄, λ̄) and xn ∈ K(xn, λn), one has x̄ ∈ K1(x̄, λ̄). Using the same argument

as for Theorem 5.1, we see that x̄ solves (EPEC). We still have to prove that (EPEC) has a

unique solution. Otherwise any pair of distinct solutions (x̄1, λ̄1) and (x̄2, λ̄2) belong to Γ(ζ, ε),

for all positive ζ and ε. Then, we arrive at the contradiction that

0 < d((x̄1, λ̄1), (x̄2, λ̄2)) ≤ diamΓ(ζ, ε). �

In terms of a measure γ ∈ {µ, η} of noncompactness we have the following result.

Theorem 5.3 Let X and Λ be metric spaces.

(i) If (EPEC) is well-posed then γ(Γ(ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+).

(ii) Conversely, if X and Λ are complete and if the following conditions hold

(a) in X × Λ, K1 is closed and K2 is lsc;

(b) f is upper upper b-level closed in K1(X, Λ)×K2(X, Λ)× Λ, for all b < 0;

(c) F (.,y) is upper c-level closed in X × Λ, for all y ∈ X × Λ and c < 0,

then (EPEC) is well-posed, provided that γ(Γ(λ̄, ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+).

Proof. We discuss only the case γ = µ, the Kuratowski measure.

(i) Assume that (EPEC) is well-posed. The solution set S of (EPEC) clearly satisfies the

relation S ⊆ Γ(ζ, ε). Hence,

H(Γ(ζ, ε),S) = H∗(Γ(ζ, ε),S).

Let {xn} = {(xn, λn)} be in S. Since {xn} is an approximating sequence, it has a subsequence

convergent to some point of S. Therefore, S is compact.

Assume that S ⊆
⋃n

k=1 Mk with diamMk ≤ ε, for k = 1, ..., n. Setting Nk = {z ∈
X | d(z,Mk) ≤ H(Γ(ζ, ε),S)}, it is easy to see that Γ(ζ, ε) ⊆

⋃n
k=1 Nk and diamNk ≤ ε +

2H(Γ(ζ, ε),S). Therefore,

µ(Γ(ζ, ε)) ≤ 2H(Γ(ζ, ε),S) + µ(S) = 2H(Γ(ζ, ε),S).

To check that H(Γ(ζ, ε),S) → 0+ as (ζ, ε) → (0+, 0+) by contradiction, suppose the existence

of ρ > 0, {(ζn, εn)} → (0+, 0+) and xn ∈ Γ(ζn, εn) such that, for all n ∈ N ,

d(xn,S) ≥ ρ.
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Since {xn} is an approximating sequence one has a subsequence convergent to some point of

S, which is impossible.

(ii) Assume that µ(Γ(ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+). We claim that Γ(ζ, ε) is closed

for all ζ, ε > 0. Let xn = (xn, λn) ∈ Γ(ζ, ε) with {xn} → x := (x, λ). Then, for all y ∈ grS

and all yn ∈ K2(xn, λn),

F (xn,y) + ε ≥ 0,

f(xn, y, λn) + ζ ≥ 0.

As K1 is closed at (x, λ), one has x ∈ K1(x, λ). By the upper −ε-level closedness of F (.,y),

one obtains, for all y ∈ grS,

F (x,y) + ε ≥ 0.

Next we show by contraposition that, for all y ∈ K2(x, λ),

f(x, y, λ) + ζ ≥ 0.

Suppose there exists y ∈ K2(x, λ) such that f(x, y, λ)+ ζ < 0. Since K2 is lsc at (x, λ), there is

yn ∈ K2(xn, λn) such that {yn} → y. By the upper −ζ-level closedness of f at (x, y, λ), there

is n0 ∈ N such that, for all n ≥ n0,

f(xn, yn, λn) < −ζ,

a contradiction. As a result, x ∈ Γ(ζ, ε) and this set is closed.

Note further that S =
⋂

ζ>0,ε>0 Γ(ζ, ε) and µ(Γ(ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+). By the

properties of µ mentioned in section 3, we see that S is compact and H(Γ(ζ, ε),S) → 0+ as

(ζ, ε) → (0+, 0+).

Let {xn} := {(xn, λn)} be an approximating sequence. There is {(ζn, εn)} → (0+, 0+) such

that, for all y ∈ grS and all yn ∈ K2(xn, λn),

F (xn,y) + εn ≥ 0,

f(xn, y, λn) + ζn ≥ 0.

Therefore (xn, λn) ∈ Γ(ζn, εn). Consequently,

d(xn,S) ≤ H(Γ(ζn, εn),S) → 0+.

By the compactness of S, there is a subsequence of xn convergent to some point of S. Hence,

(EPEC) is well-posed. �

The following examples show that all assumptions of Theorem 5.3 (ii) are essential.

Example 5.6 (the closedness of K1 is essential). Let X = [−1, 1], Λ = [0, 1], K1(x, λ) = (−λ, 1],

K2(x, λ) ≡ [0, 1], f(x, y, λ) = x(x− y) and F ((x, λ1), (y, λ2)) = 2x+y. Then X is complete and
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K2 is lsc in X × Λ. Assumptions (ii b) and (iii b) are fulfilled since f and F are continuous in

X ×X ×Λ and (X ×Λ)× (X ×Λ), respectively. Moreover, Γ(ζ, ε) ⊆ [−1, 1]× [0, 1] and hence

γ(Γ(ζ, ε)) ≤ γ([−1, 1] × [0, 1]) = 0. It is easy to see that the solution set of (EPEC) coincides

with grS. But S(0) = {1} and S(λ) = {0, 1} for all λ ∈ (0, 1], i.e., grS = (1, 0) ∪ {(k, λ) | k =

0, 1;λ ∈ (0, 1]}. With the same arguments as in Example 5.2, (EPEC) is not well-posed. The

reason is that K1 is not closed at (0, 0).

Example 5.7 (the lower semicontinuity of K2 cannot be dropped). Let X and Λ be as in

Example 5.6, K1(x, λ) = [0, 1], f(x, y, λ) = x + y, F ((x, λ1), (y, λ2)) = 1 and

K2(x, λ) =

{
{−1, 0, 1}, if λ = 0,

{0, 1}, otherwise.

Then X is complete, K1 is closed in X × Λ and (ii b) and (iii b) hold. Γ(ζ, ε) ⊆ [0, 1] × [0, 1]

and hence γ(Γ(ζ, ε)) = 0. Furthermore, the solution set of (EPEC) is grS. But S(0) = {1},
S(λ) = {0, 1} for all λ ∈ (0, 1]. Hence, grS = (1, 0) ∪ {(k, λ) | k = 0, 1;λ ∈ (0, 1]}. Thus,

(EPEC) is not well-posed. The reason is that K2 is not lsc in X × Λ.

Example 5.8 ((ii b) cannot be dispensed). Let X, Λ, K1, F as in Example 5.7, K2(x, λ) =

{λ, 1 + λ} and

f(x, y, λ) =

{
−1, if x + y = 1,

1, otherwise.

Then X is complete, (ii a) and (ii c) are satisfied and γ(Γ(ζ, ε)) = 0. But S(0) = (0, 1),

S(λ) = [0, 1] for all λ ∈ (0, 1], i.e. grS =
(
(0, 1) × {0}

)
∪ {[0, 1] × {λ} | λ ∈ (0, 1]}. Therefore,

(EPEC) is not well-posed. Indeed, xn = (0, 1
n ) is a solution of (EPEC). We see that xn tends to

x = (0, 0), but x does not belong to the solution set of (EPEC). The reason is that assumption

(iib) is violated as shown in Example 3.8.

Example 5.9 ((ii c) is essential). Let X, Λ, K1,K2 be as in Example 5.8, f(x, y, λ) = 1 and

F ((x, λ1), (y, λ2)) =

{
−1, if x + y = 1, λ1 = 0,

1, otherwise.

We see that X is complete, (iia) and (iib) hold and γ(Γ(ζ, ε)) = 0. Clearly S(λ) = [0, 1] for

all λ ∈ [0, 1]. It is easy to see that the solution set of (EPEC) is the following subset of grS:

S =
(
(0, 1) × {0}

)
∪ {[0, 1] × {λ} | λ ∈ (0, 1]}. By the same argument as in Example 5.8, one

sees that (EPEC) is not well-posed. The reason is that assumption (iic) is violated.

6 Optimization problem with equilibrium constraints (OPEC).

We prove first a sufficient condition for well-posedness in topological settings.

Theorem 6.1 Assume that X is compact and
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(i) in X × Λ, K1 is closed and K2 is lsc;

(ii) f is upper 0-level closed wrt id in K1(X, Λ)×K2(X, Λ)× Λ× {0};

(iii) g is lower pseudocontinuous in X × Λ.

Then (OPEC) is well-posed. Furthermore, if S(λ) is a singleton, for all λ ∈ Λ, and (OPEC)

possesses a unique solution, then this problem is uniquely well-posed.

Proof. Set F ((x, λ1), (y, λ2)) = g(y, λ2)−g(x, λ1). To apply Theorem 5.1, we need to check only

that F (.,y) is upper 0-level closed wrt id in X×Λ for all y ∈ X×Λ. Let xn = (xn, λn) ∈ X×Λ

and εn ∈ (0,+∞) be such that {(xn, λn, εn)} → (x, λ̄, 0) and

F (xn,y) + εn ≥ 0.

Suppose

g(y, λ) < g(x, λ̄).

Since g is lower pseudocontinuous at (x, λ̄), one has

g(y, λ) < lim inf g(xn, λn).

So, there are t ∈ R and n0 ∈ N such that, for all n ≥ n0,

g(y, λ)− g(xn, λn) ≤ g(y, λ)− t < 0.

This is impossible since g(y, λ) − g(xn, λn) + εn ≥ 0 for all n. The assertion on unique well-

posedness is easy to be demonstrated. �

Remark 6.1

(i) In the special case where K1(x, λ) ≡ K2(x, λ) = X, it is easy to see that in (ii) we can

replace f by ”f(., y, .), for all y ∈ X”. So the unique well-posedness part of Theorem

6.1 improves Theorem 4.5 of [12]. Indeed, by using similar arguments as in Remark 3.2,

the lower semicontinuity of f(x, ., .) together with the monotonicity of f(., ., λ) imply

condition (ii) of Theorem 6.1. The lower semicontinuity of g required in Theorem 4.5 of

[12] is more restrictive than our assumption (iii). Moreover, we omit the hemicontinuity

of f(., ., λ) and convexity of f(x, ., .) and g. Note further that the lower pseudocontinuity

of g imposed in Theorem 6.1 is strictly weaker than the lower semicontinuity requirement

in Theorem 4.5 of [12].

(ii) In [22] an optimization problem with variational inequality constraints, a special case of

our (OPEC), was investigated for X being a reflexive Banach space. Well-posedness and

unique well-posedness results were established under the assumption that the parametric

problem defining the constraint is parametrically well-posed or parametrically uniquely

well-posed, respectively. In our results here, we impose only explicit conditions on the

data of the problems. However, it is not hard to modify Theorem 6.1 to include properly

the counterparts in [22].
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For ζ, ε > 0, the approximate solution set of (OPEC) is defined by

M(ζ, ε) = {(x, λ) ∈ K1(x, λ)× Λ | g(x, λ) ≤ inf
λ̂∈Λ,y∈S(λ̂)

g(y, λ̂) + ε and

f(x, y, λ) + ζ ≥ 0,∀y ∈ K2(x, λ)}.

Theorem 6.2 Let X and Λ be metric spaces. Then the following assertions hold.

(i) diamM(ζ, ε) → 0+ as (ζ, ε) → (0+, 0+), if (OPEC) is uniquely well-posed.

(ii) For the converse assume that X and Λ are complete and that the following conditions

hold

(a) in X × Λ, K1 is closed and K2 is lsc;

(b) f is upper 0-level closed wrt id in K1(X, Λ)×K2(X, Λ)× Λ× {0};

(c) g is lower pseudocontinuous in X × Λ.

Then (OPEC) is uniquely well-posed, provided that diamM(ζ, ε) → 0+ as (ζ, ε) →
(0+, 0+).

Proof. (i) Assume that (OPEC) is uniquely well-posed. Arguing ad absurdum suppose the

existence of {(ζn, εn)} → (0+, 0+), n0 ∈ N and r > 0 such that, for all n ≥ n0, diamM(ζn, εn) >

r. Then, (x1
n, λ1

n) and (x2
n, λ2

n) in M(ζn, εn) exist such that d((x1
n, λ1

n), (x2
n, λ2

n)) > r
2 . Being

approximating sequences, {(x1
n, λ1

n)} and {(x2
n, λ2

n)} converge to the unique solution and we get

the contradiction

lim
n→+∞

d((x1
n, λ1

n), (x2
n, λ2

n)) = 0.

(ii) Assume that {xn} := {(xn, λn)} is an approximating sequence for (OPEC). Then there

is some {(ζn, εn)} → (0+, 0+) such that

g(xn, λn) ≤ inf
λ̂∈Λ,y∈S(λ̂)

g(y, λ̂) + εn,

f(xn, y, λn) + ζn ≥ 0,∀y ∈ K2(xn, λn).

This means that xn = (xn, λn) ∈ M(ζn, εn) and hence {xn} is a Cauchy sequence and converges

to some point x̄ = (x̄, λ̄). Since K1 is closed at (x̄, λ̄) and xn ∈ K1(xn, λn), one has x̄ ∈ K1(x̄, λ̄).

Using the same argument as for Theorem 6.1, one sees that x̄ solves (OPEC). It remains to

show that (OPEC) has a unique solution. If (OPEC) has two distinct solutions (x̄1, λ̄1) and

(x̄2, λ̄2), they must belong to M(ζ, ε), for all ζ, ε > 0. This yields a contradiction that

0 < d((x̄1, λ̄1), (x̄2, λ̄2)) ≤ diamM(ζ, ε). �
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For well-posedness of (OPEC) in terms of measures of noncompactness we have the following

result.

Theorem 6.3

(i) If (OPEC) is well-posed, then γ(M(ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+), where γ is either

the Kuratowski or the Hausdorff measure of noncompactness.

(ii) Conversely, if X and Λ are complete and if the following conditions hold

(a) in X × Λ, K1 is closed and K2 is lsc;

(b) f is upper b-upper level closed in K1(X, Λ)×K2(X, Λ)× Λ, for all b < 0;

(c) g is lsc in X × Λ,

then (OPEC) is well-posed, provided that M(Γ(ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+).

Proof. Let us consider only the case of the Hausdorff measure γ = η.

(i) Assume that (OPEC) is well-posed. For all ζ, ε > 0, the solution set S of (OPEC)

satisfies obviously the containment S ⊆ M(ζ, ε). Hence,

H(M(ζ, ε),S) = H∗(M(ζ, ε),S).

Any sequence {xn} in S is an approximating sequence of (OPEC) and has a subsequence

convergent to some point of S. So, S is compact.

Let S ⊆
⋃n

k=1 B(zk, ε). Then M(ζ, ε) ⊆
⋃n

k=1 B
(
zk, ε + H(M(ζ, ε),S

)
. Therefore,

η(M(ζ, ε)) ≤ H(M(ζ, ε),S) + η(S) = H(M(ζ, ε),S).

To prove that H(M(ζ, ε),S) → 0+ as (ζ, ε) → (0+, 0+) by contradiction suppose the exis-

tence of ρ > 0, {(ζn, εn))} → (0+, 0+) and xn ∈ M(ζn, εn) such that, for all n ∈ N ,

d(xn,S) ≥ ρ.

Being an approximating sequence for (EPEC), {xn} has a subsequence convergent to some

point of S, which is impossible.

(ii) Assume that η(M(ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+). We first check that M(ζ, ε) is

closed for all ζ, ε > 0. Let xn := (xnλn) ∈ M(ζ, ε) with {xn} → x := (x, λ). Hence,

g(xn, λn) ≤ inf
λ̂∈Λ,y∈S(λ̂)

g(y, λ̂) + ε,

f(xn, y, λn) + ζ ≥ 0,∀y ∈ K2(xn, λn).

Since K1 is closed at (x, λ), x ∈ K1(x, λ). By the semicontinuity of g at (x, λ), we have

g(x, λ) ≤ lim inf g(xn, λn) ≤ inf
λ̂∈Λ,y∈S(λ̂)

g(y, λ̂) + ε.
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Furthermore, we claim that, for all y ∈ K2(x, λ),

f(x, y, λ) + ζ ≥ 0.

Indeed, if there exists y ∈ K2(x, λ) such that f(x, y, λ) + ζ < 0, there is yn ∈ K2(xn, λn) such

that yn → y, as K2 is lsc at (x, λ). By the upper −ζ-level closedness of f at (x, y, λ), there is

n0 ∈ N such that, for all n ≥ n0,

f(xn, yn, λn) < −ζ,

which is a contradiction. Hence, M(ζ, ε) is closed. Note further that S =
⋂

ζ>0,ε>0 M(ζ, ε) and

η(M(ζ, ε)) → 0+ as (ζ, ε) → (0+, 0+). Therefore, by the earlier-mentioned properties of η, S is

compact and H(M(ζ, ε),S) → 0+ as (ζ, ε) → (0+, 0+).

Let {xn} := {(xn, λn)} be an approximating sequence, i.e. there exists {(ζn, εn)} → (0+, 0+)

such that

g(xn, λn) ≤ inf
λ̂∈Λ,y∈S(λ̂)

g(y, λ̂) + εn,

f(xn, y, λn) + ζn ≥ 0,∀y ∈ K2(xn, λn).

Consequently, (xn, λn) ∈ M(ζn, εn). So,

d(xn,S) ≤ H(M(ζn, εn),S) → 0+.

By the compactness of S, there is a subsequence of {xn} convergent to some point of S. Thus,

(OPEC) is well-posed. �

Remark 6.2 For the special case mentioned in Remark 6.1 (i), Theorems 4.1 and 4.2 of [12]

contain similar results for the case γ = µ. Theorem 6.2 improves Theorem 4.1 since we omit

the assumptions encountered in Remark 6.1. Our Theorem 6.3 is an improvement of Theorem

4.2 of [12], as the lower pseudocontinuity of g in (iic) is weaker than the lower semicontinuity

imposed there.
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